Is I₂ or MeCN the Better Base to coordinate the lodine Monocation, I+? The Hard–Soft Acid—Base Principle in Preparative Inorganic Chemistry

Petra K. Gowik and Thomas M. Klapötke

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, D-1000 Berlin 12, FRG

The quantitative formation of MeCNI⁺ from MeCN and I_3^+ in SO₂ and the back reaction (MeCNI⁺ + I_2 gives MeCN + I_3^+) are discussed on the basis of the HSAB principle.

Recently we reported the preparation (isolated yield: 95%) of MeCNI+AsF₆⁻ (eqn. 1) which represents the first example of a complex where a nitrogen base is coordinated to the iodine monocation in a 1:1 stoichiometry.¹ However, the reaction in eqn. (1) does not follow the predictions of the hard-soft acid-base (HSAB) theory.

$$MeCN + I_3^+ AsF_6^- \xrightarrow{SO_2} MeCNI^+ AsF_6^- + I_2 \qquad (1)$$

Pearson and Parr expanded the HSAB principle by introducing the absolute electronegativity (χ) and the absolute hardness (η) which have been derived from density functional theory.^{2–5} With this concept it is easy to calculate the number of electrons transferred, ΔN (eqn. 2), and the energy change due to charge transfer, ΔE (eqn. 3), caused by interaction of a Lewis acid (A) with a Lewis base (B).

$$\Delta N = (\chi_{\rm A} - \chi_{\rm B})/2(\eta_{\rm A} + \eta_{\rm B}) \tag{2}$$

$$\Delta E = -0.25(\chi_{\rm A} - \chi_{\rm B})^2 / (\eta_{\rm A} + \eta_{\rm B})$$
(3)

However, if one calculates the ΔN and ΔE values for the interaction of I⁺ with I₂ (eqn. 4) and I⁺ with MeCN (eqn. 5), clearly elemental iodine should be a better base to coordinate I⁺ than acetonitrile (Table 1) and it is puzzling that MeCNI⁺AsF₆⁻ is formed according to eqn. (1). The driving force for eqn. (1) can be seen in the fact (*i*) that 'pure covalent' N-I bonds [binding energy $E_{\rm B}$ (N-I) = 156 kJ mol⁻¹, average of $E_{\rm B}$ (N-N) = 166 and $E_{\rm B}$ (I-I) 149 kJ mol⁻¹]⁶ should be slightly

Table 1 Electronegativity and hardness values

	E _I /eV ^a	$E_{\rm A}/{ m eV}^b$	χ/eV ^c	η/eV ^d	ΔN^e	$\Delta E/kJ$ mol ^{-1f}
I_2 MeCN I^+ Eqn. (4) Eqn. (5)		2.6 -2.8 10.45	6.6 4.7 10.79	3.4 7.5 4.34	0.55 0.42	-240.8 -207.3

^{*a*} Ionization potential, ref. 3. ^{*b*} Electron affinity, ref. 3. ^{*c*} Calc. from: $\chi = (E_1 + E_A)/2$, ref. 5. ^{*d*} Calc. from: $\eta = (E_1 - E_A)/2$, ref. 5. ^{*e*} Calc. from eqn. (2). ^{*f*} Calc. from eqn. (3); 1 J = 0.239 cal.

Table 2 1H NMR and UV-VIS data

	δ (ppm)	λ _{max} /nm ^b		
	SO ₂	SO ₂ ClF	SO ₂ Cl ₂	SO ₂ Cl ₂
I ₂				530
$I_2 I_3^+$				470
I_3^+ + MeCN	2.73	2.38^{c}	2.39 ^c	480
$MeCNI^+ + I_2$	2.73	2.37 ^c	2.36 ^c	480
MeCN	2.05	2.09	2.12	
MeCNI+	2.73	2.75	2.80	

^{*a*} SiMe₄, 25 °C, 60 MHz. ^{*b*} 350 $\leq \lambda \leq$ 750 nm. ^{*c*} MeCN···I₃+.

more stable than I–I bonds and (*ii*) that I₂ is more or less insoluble in SO₂ [*cf.* ΔH (I₂, aq. \rightarrow I₂, s) = -23 kJ mol⁻¹].⁷ This favours eqn. (1) by 30 kJ mol⁻¹ and compensates the missing 33 kJ mol⁻¹ due to charge transfer (Table 1).

$$I^+ + I_2 \rightarrow I_3^+ \tag{4}$$

$$I^+ + MeCN \rightarrow MeCNI^+$$
 (5)

If these assumptions are correct the reaction according to eqn. (1) should not be possible in a solvent which dissolves all four components. SO₂Cl₂ and SO₂ClF are such solvents. We found out by ¹H NMR and UV–VIS spectroscopy (Table 2) (a) that MeCN does not react with I₃+AsF₆⁻ in SO₂Cl₂ or SO₂ClF (it forms a loose adduct MeCN···I₃⁺) and (b) that MeCNI⁺AsF₆⁻ (prepared in SO₂, eqn. 1) reacts in SO₂Cl₂ with I₂ to yield MeCN and I₃+AsF₆⁻ (MeCN···I₃⁺ adduct). The MeCN···I₃⁺ adduct is so labile that by pumping off the solvent the MeCN is removed too and pure I₃+AsF₆⁻ is isolated (MeCNI⁺AsF₆⁻ is stable in a dynamic vacuum for more than 1 h).¹

These results are nicely in agreement with both the HSAB principle and simple thermodynamic estimations, and demonstrate that the choice of the solvent can dramatically change the chemistry (SO₂ seems to be optimum if I_3^+ is used as a source of 'I+'). Eqn. (1) represents an interesting example where an equilibrium can be totally shifted to one or the other side just by changing the solvent. This effect can be predicted on theoretical basis which leads to deeper understanding of reactivity and helps to plan simple inorganic synthesis.

We thank the Deutsche Forschungsgemeinschaft (KL 636-2/1) the Fonds der Chemischen Industrie and the BMBW (Graduiertenkolleg: 'Synthese und Strukturaufklärung niedermolekularer Verbindungen' for financial support. We also thank the BMBW for a graduate scholarship (P. G.).

Received, 3rd July 1990; Com. 0/03001E

References

- 1 I. Tornieporth-Oetting, T. Klapötke and J. Passmore, Z. Anorg. Allg. Chem., 1990, 586, 93.
- 2 R. G. Pearson, J. Am. Chem. Soc., 1988, 110, 7684.
- 3 R. G. Pearson, Inorg. Chem., 1988, 27, 734.
- 4 R. G. Parr, R. A. Donnelly, M. Levy and W. E. Palke, J. Chem. Phys., 1978, 68, 3801.
- 5 R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 1983, 105, 7512.
- 6 J. E. Huheey, *Inorganic Chemistry*, Harper International SI Edition, Cambridge, 1983, appendix.
- 7 D. A. Johnson, Some Thermodynamic Aspects of Inorganic Chemistry, Cambridge University Press, Cambridge, 1982, appendix.